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ABSTRACT: The Stueckelburg Lagrangian density is reformulated in fractional form in four- dimensional space using 

Riemann- Liouville fractional derivatives. The fractional Euler-Lagrange equations and the fractional Hamilton's equations 

are constructed from the fractional Stueckelburg Lagrangian density. The formulation presented and the resulting equations 

are very similar to those that appear in the field of classical calculus of variations. 
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INTRODUCTION  
The Lagrangian formalism is one of the main tools of the 

description of the dynamics of physical systems including 

systems with finite (particles) and infinite number of degrees 

of freedom (fields). It is based on the action principle, which 

states that the classical motion of a given physical system is 

such that it extremizes a certain functional of dynamical 

variables called action. The form of the action determines the 

equations of motion (Euler-Lagrange equations) of the 

physical system. Riewe [1, 2] has developed fractional 

Lagrangian, fractional Hamiltonian, and fractional 

mechanics. He has shown that Lagrangian with fractional 

derivative lead directly to equations of motion with non-

conservative classical forces. Fractional derivatives have 

played the significant rule in physics, engineering and 

applied mathematics [3–10]. Euler–Lagrange equations have 

been presented for unconstrained and constrained fractional 

variational problems by Agrawal [11]. The resulting 

equations are found to be similar to those for variational 

problems containing integral order derivatives. In other 

words, the results of fractional calculus of variations reduce 

to those obtained from traditional fractional calculus of 

variations when the derivative of fractional order replaced by 

integral order. This approach is extended to classical fields 

with fractional derivatives [12]. Baleanu et al [13-16] 

investigated Euler-Lagrange equations and the fractional 

Hamilton equations corresponding to a fractional 

generalization of the equivalent Lagrangians of mechanical 

and field systems. Rabei et al [17] investigated the classical 

field with fractional derivatives using the Hamiltonian 

formalism for discrete and continuous systems.  

The aim of this paper is to construct the fractional 

Hamiltonian equations for the Stueckelburg field within 

Riemann-Liouville fractional derivatives. The present paper 

is organized as follows: In Section 2, Riemann – Liouville 

fractional derivatives are briefly reviewed. In section 3 we 

propose a new fractional Stueckelburg Lagrangian density. 

Then in section 4 we obtain fractional Stueckelburg 

equations using the l Euler-Lagrange equations. Section 5 is 

devoted to the equations of motion in terms of Hamiltonian 

density in fractional form. The conclusion is presented in 

section 6. 

1.  Mathematical  Fra mework 

Fractional calculus is the theory of derivatives and integrals 

of arbitrary non-integer order. In this section, we formulate 

the problem in terms of the left and the right Riemann-

Liouville (RL) fractional   derivatives, which are defined as 

follows: the left Riemann-Liouvilla fractional derivative, 

which is denoted by LRLFD, reads as [18] 
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and the form of right Riemann-Liouville fractional derivative, 

which is denoted by RRLFD, is given below  
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Here ( ) represents the gamma function and   is the order of 

derivative such that (n-1 n) and is not equal zero. If    is 

an integer, these derivatives become the usual derivatives. 
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By direct calculation we observe that the RL derivative of a 

constant is not zero, namely 
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The action of the classical field containing fractional partial 

derivatives takes the form [19, 20] 
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Extremization of this action leads to the fractional Euler-

Lagrange equation of the form  
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For      , we have     
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      and the last 

equation reduces to the standard Euler-Lagrange [21] 
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The canonical conjugate momentum to   is defined as  
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2.  Fractional Stueckelburg Lagrangian Density 

The most general form of Lagrangian density for a four-vector 

field is given by the so-called Stueckelburg Lagrangian density 

[22] (in SI units where    is the free space permittivity and c is 

the speed of light), 
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Where    (    ) is the usual four-vector current,         is a 

lagrangian multiplier for the Lorentz constraint term,   
    ⁄       ⁄  is the Compton wave number for photons of 

mass m,      is a four dimension antisymmetric second rank 

tensor and            four-vector potential.  

 

To rewrite the Stueckelburg Lagrangian density in Rie 

mann – Liouville fractional form use these relations 
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Where                 and                  . 

 

Expand     in terms of 0, i and 0, j, respectively, and use these 

relativistic notations 
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Thus, the fractional Stueckelburg Lagrangian density in Riemann – 

Liouville fractional derivative becomes 
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3. Fractional form of Euler-Lagrange Equations of 

Stueckelburg Lagrangian Density 

 

Let us start with the definition of fractional Stueckelburg 

Lagrangian density and use the generalization formula of Euler – 

Lagrange equation (7) to obtain the equations of motion from 

Stueckelburg Lagrangian density. 

 

  Take the first field variable  , then 
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      (  ) Calculating 

these derivatives yields to 
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Substituting equations (17, 18, and 19) in equation (16) we get  
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This represents the first non- homogeneous equation in 

fractional form. 

Now use the general formula (7) to obtain other equations of 

motion from the other fields' variables    and   . 
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Calculating these derivatives yields to 
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Substituting equations (22, 23, and 24) in equation (21) we get 
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And  
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Substituting equations (26, 27, and 28) in equation (25) we 
get 
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Adding equations (25) and (30) to get 
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(31) 

This represents the second non- homogeneous equation in 

fractional form. 

If    goes to 1, Eqs. (20) and (31) go to the standard 

equations. 

4. Equations of Motion in terms of Hamiltonian 

Formulation 

To construct the fractional Hamiltonian equations within 

Riemann – Liouville fractional derivative from fractional 

Stueckelburg Lagrangian density, we consider the 

Lagrangian density to be a function of field variables and its 

fractional derivatives with respect to space and time as: 
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We introduce the conjugate momenta as 
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and the Hamiltonian depending on the fractional time 

derivatives  reads as 

H =    
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Take the total differential of both sides we get 
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Substituting the values of conjugate momenta from equation 

(32), we get 
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But the Hamiltonian is function of the form 
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So the total differential of Hamiltonian function reads as: 
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Comparing equations (36) and (37), we get the following 

Hamilton's equations of motion:                                                          
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The final group of these equations can be rewritten using the 

Euler-Lagrange equation (7) to get equations of motion in 

fractional form. 
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Finding these derivatives, then we get 
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Rearrange this equation 
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This is the first non- homogeneous equation in fractional 

form. 

Now take other fields variables          
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Add equations (44) and (46) to obtain 
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(47) 
This represents the second non- homogeneous equation in 

fractional form. 

 

5. CONCLUSION 

The Stueckelburg Lagrangian density is reformulated 

using fractional calculus with left-right Riemann-Liouville 

fractional derivatives. The derivation of the usual Euler-

Lagrange equations of motion for classical field has 

extended to the case the Lagrangian contains fractional 

derivatives of the field. This method has been applied with 

the variational principle to obtain the corresponding 

fractional Euler-Lagrange equations from the fractional 

Stueckelburg Lagrangian density. The fractional 

Hamilton's equations are obtained for Stueckelburg 

Lagrangian density. Our results are the same as those 

derived by using the formulation of Euler- Lagrange 

equations. The classical results are reobtained when 

        to 1. 
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